Contohsoal bilangan berpangkat dan bentuk . Dengan mengetahui sifat bilangan pangkat maka akan memudahkan kamu dalam. Rangkuman Dan Soal Bilangan Berpangkat Dan Bentuk Akar Materi Belajar Dari Rumah Di Tvri Untuk Smp Semua Halaman Bobo from soal dan pembahasan bentuk pangkat dan akar materi matematika kelas x sma. Jika a Marikita simak sifat dan contoh soal bilangan dengan Pangkat Positif sebagai berikut: a m × a n = a m+n . Contoh soal: 3 2 × 3 3 = 3 2 + 3 = 3 5 a m: a n = a m-n. Contoh soal: (a m) n = a mxn. Baca Juga Bentuk akar adalah penyebutan lain suatu bilangan berpangkat. Bentuk akar merupakan akar dari bilangan yang hasilnya bukan bilangan Haloadik adik berikut ini kakak admin bagikan contoh soal pangkat dan akar soal matematika kelas 9 smp lengkap dengan kunci jawaban dan pembahasan. 35 32 = 3 × 3 × 3 × 3 × 3 3 × 3 × 3 = 3 × 3 = 32 =. Contoh Soal Menentukan Nilai X Dari Persamaan Halokelas 9 video ini adalah latihan soal bentuk pangkat dan akar untuk melatih diri dalam mempersipkan ulangan ^_^#bentukakar #ben BilanganBerpangkat dan Bentuk Akar . Siswa dapat merasionalkan bentuk akar. Terima Kasih anda telah membaca Kisi-Kisi Soal UAS Matematika Kelas 9 Kurikulum 2013 Jika anda Ingin mendapatkan kiriman info dari GRATIS langsung ke Email anda. Silahkan tulis Email anda di form berikut ini dan jangan lupa cek kotak masuk Haloadik-adik, berikut ini kakak admin bagikan contoh Soal Pangkat dan Akar, Soal Matematika Kelas 9 SMP lengkap dengan Kunci Jawaban dan Pembahasan. Soal Pangkat dan Akar ini terdiri dari 20 butir soal pilihan ganda. Adik-adik bisa mendownload soal ini untuk latihan di rumah. ContohSoal Bilangan Berpangkat Dan Bentuk Akar Kelas 9 Ruang Ulangan Harian Bentuk Akar Materi Kelas 9 Bentuk Pangkat Dan Akar 10 Sma Cara Merasionalkan Pecahan Bentuk Akar Sederhanakan Bentuk Akar Berikut A 112b 216c 605d 800e Pembahasan a. Langkah-langkah menuliskan notasi ilmiah bilangan dibawah 0. Tulis angka bukan nol menjadi bilangan kurang dari 10 dari bilangan tersebut ----> 5,6. Hitung berapa banyak semua angka nol sebelum angka di bilangan itu, ini akan menjadi pangkat negatif----> 7. Jadi. b. SoalUlangan Bilangan Berpangkat Dan Bentuk Akar Kelas 9 Doc. Contoh Soal Perpangkatan Dan Bentuk Akar Kelas 9 Kurikulum 2013 Soal Soal From contohsooal.blogspot.com. Soal ikan hias kls 11 semester genap Soal indonesia kls 10 Soal hots smk kls x sejarah Soal hots kimia kls x kurikulum 13. Source: contohsooal.blogspot.com. Source: kuncidunia-31 BentukAkar. Pada dasarnya sifat-sifat yang telah dimiliki oleh bilangan berpangkat juga dimiliki oleh bilangan bentuk akar, yakni: Untuk bilangan real a, b dan n, m bilangan rasional berbentuk n=p/q dan m=s/t dengan p, q, s, t bilangan asli berlaku: dengan a dan b tidak negatif saat p atau s genap. tcwPL3. Assalamu'alaikum Wr. Wb. Selamat datang di blog Artikel & Materi . Senang sekali rasanya kali ini dapat kami bagikan materi Matematika kelas 9 Semester 2 Bab Bilangan Berpangkat dan Bentuk Akar beserta contoh soalnya. Bilangan Berpangkat dan Bentuk Akar Bilangan Berpangkat Positif, Negatif, dan Nol Pengertian Perpangkatan Perpangkatan merupakan perkalian berulang sebuah bilangan dengan bilangan itu sendiri. Contoh 2^2 dibaca dua pangkat dua yang sama artinya dengan 2 x 2 4^3 dibaca empat pangkat tiga yang sama artinya dengan 4 x 4 x 4 7^5 dibaca tujuh pangkat lima yang sama artinya dengan 7 x 7 x 7 x 7 x 7 Ket. ^ = pangkat Bilangan Berpangkat Positif Bilangan berpangkat positif merupakan bilangan yang mempunyai pangkat/ eksponen positif. Contoh 3^2 = 3 x 3 = 9 4^3 = 4 x 4 x 4 = 64 -2^2 = -2 x -2 = 4 -5^3 = -5 x -5 x -5 = -125 Bilangan kuadrat sempurna seperti 1, 4, 9, dan 16 dapat dinyatakan dalam bentuk geometri seperti di bawah ini Bilangan kuadrat sempurna adalah bilangan yang merupakan hasil kali dari suatu bilangan dengan dirinya sendiri. Sebagai contoh di atas 16 adalah bilangan kuadrat sempurna karena 16 = 4 x 4 4. Notasi 4 x 4 dapat dituliskan dalam bentuk pangkat. Bentuk pangkat ini menjelaskan pada kita berapa suatu bilangan yang kita sebut sebagai basis atau bilangan pokok digunakan sebagai faktor. Bilangan yang digunakan sebagai pangkat disebut eksponen atau pangkat. Pernyataan 4 x 4 dituliskan sebagai 4^2. Pada notasi, 4 menyatakan bilangan pokok atau basis, dan 2 menyatakan pangkat atau eksponen. Contoh Tuliskan pernyataan berikut dalam bentuk eksponen a. 2 x 2 x 2 x 2 x 2 Bilangan pokoknya adalah 2 dan faktornya adalah 5. 2 x 2 x 2 x 2 x 2 = 2^5. b. m x m x m x m Bilangan pokoknya adalah m dan faktornya adalah 4. m x m x m x m = m^4. c. 7 Bilangan pokoknya adalah 7 dan faktornya adalah 1 7 = 7^1. d. Tuliskan 222 – 5 – 5 dalam bentuk eksponen. Dengan menggunakan sifat asosiatif kita kelompokkan faktor dengan bilangan pokok yang sama sebagai berikut 222-5-5 = [222][-5-5] = 2^3-5^2 Jarak antara bumi dan matahari adalah sekitar10^8 kilometer. Tuliskan bilangan ini sebagai pernyataan perkalian dan hitunglah hasilnya. 10^8 = = Jarak antara bumi dan matahari adalah sekitar 100 juta kilometer. Bilangan Berpangkat Negatif dan Nol Bilangan bulat berpangkat negative Tidak semua pangkat bernilai positif. Beberapa pangkat adalah bulat negatif. Perhatikan pola bilangan berikut untuk menemukan nilai 10^-1 dan 10^-2. Dengan memperluas pola yang ada, maka hasil yang dapat diperoleh adalah 10^-1 = 1/10 dan 10^-2 = 1/10^2 1/100 Pada pola tersebut, apabila kamu kalikan bilangan pokok, pangkatnya naik satu. Sebagai contoh 10^3 x 10 = 10^4. Sedangkan apabila kamu bagi dengan bilangan pokok, pangkatnya turun satu. Sebagai contoh, 10^-2 10 = 10^-3 Untuk setiap a є R dan a ≠ 0 berlaku -6-3 = -1/6^3 = -1/6 x -1/6 x -1/6 = -1/216 Tuliskan 10^-3 menggunakan pangkat positif. Kemudian tentukan nilainya. 10^-3 = 1/〖10〗^3 = 1/1000 = 0,001 Sederhanakan pernyataan xy-2 = x . y-2 = x. 1/ y^2 = x/y^2 Bakteri memiliki lebar 10-3 milimeter. Jarum pentul memiliki diameter 1 milimeter. Berapa banyak bakteri yang dapat mengisi diameter jarum tersebut. Untuk menentukan banyak bakteri, bagilah 1 dengan 10^-3 = 1/〖10^-3 = 10^3 = 1000 Jadi banyak bakteri yang dapat mengisi diameter jarum pentul adalah 1000 bakteri. Bilangan bulat berpangkat nol Untuk setiap a є R dan a ≠ 0, maka Bilangan a^0 = disebut bilangan berpangkat tak sebenarnya. Contoh 3^0 = 1 -10^0 = 1 -21^-3 + -21^3 = -21^0 = 1 Bilangan Pecahan Berpangkat Bentuk pangkat dapat ditulis sabagai berikut a/b^n= a/b x a/b x…x a/b= a^n/b^n Sebanyak n buah, dengan a ≠ 0, b ≠ 0, dan n > 0 a/b^-n= b/a x b/a x…x b/a= b^n/a^n Sebanyak n buah, dengan a ≠ 0, b ≠ 0, dan n n, a ≠ 0 a^m/a^n = 1/a^n-m , , dengan m n 55 53 = 5 x 5 x 5 x 5 x 5 5 x 5 x 5 = 5 x 5 = 52 = 55 - 3 Sifat 3 amn = am x n 342 = 34 x 34 = 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 = 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 = 38 = 34 x 2 Sifat 4 a x bm = am x bm 4 x 23 = 4 x 2 x 4 x 2 x 4 x 2 = 4 x 4 x 4 x 2 x 2 x 2 = 43 x 23 Sifat 5 a bm = am bm 6 3 4 = 6 3 x 6 3 x 6 3 x 6 3 = 6 x 6 x 6 x 6 3 x 3 x 3 x 3 = 64 34 Bilangan Bulat dengan Eksponen Bilangan Bulat Negatif Dari pola bilangan itu dapat disimpulkan bahwa 20 = 1 dan 2-n = 1/2n Pecahan Berpangkat Bilangan Bulat Kita telah mengetahui bahwa pecahan adalah bilangan dalam bentuk dengun a dan b bilangan bulat b ≠ 0. Bagaimanakah jika pecahan dipangkatkan dengan bilangan bulat? Untuk menentukan hasil pecahan yang dipangkatkan dengan bilangan bulat, caranya sama dengan menentukan hasil bilangan bulat yang dipangkatkan dengan bilangan bulat. Bentuk Akar dan Bilangan Berpangkat Pecahan Bilangan Rasional dan Irasional Bilangan rasional adalah bilangan yang dapat dinyatakan dalam bentuk a/b dengan a, b bilangan bulat dan b ≠ 0. Bilangan rasional merupakan gabungan dari bilangan bulat, nol, dan pecahan. Contoh bilangan rasional adalah -5, -1/2, 0, 3, 3/4, dan 5/9. Sebaliknya, bilangan irasional adalah bilangan yang tidak dapat dinyatakan dalam bentuka/b dengan a, b bilangan bulat dan b ≠ 0. Contoh bilangan irasional adalah . Bilangan-bilangan tersebut, jika dihitung dengan kalkulator merupakan desimal yang tak berhenti atau bukan desimal yang berulang. Misalnya √2 = 1,414213562 .... Selanjutnya, gabungan anrara bilangan rasional dan irasional disebut bilangan real. Bentuk Akar Berdasarkan pembahasan sebelumnya, contoh bilangan irasional adalah √2 dan √5 . Bentuk seperti itu disebut bentuk akar. Dapatkah kalian menyebutkan contoh yang lain? Bentuk akar adalah akar dari suatu bilangan yang hasilnya bukan bilangan Rasional. Bentuk akar dapat disederhanakan menjadi perkalian dua buah akar pangkat bilangan dengan salah satu akar memenuhi definisi √a2 = a jika a ≥ 0, dan –a jika a < 0 Contoh Sederhanakan bentuk akar berikut √75 Jawab √75 = √25x3 = √25 x √3 = 5√3 Mengubah Bentuk Akar Menjadi Bilangan Berpangkat Pecahan dan Sebaliknya Bentuk √a dengan a bilangan bulat tidak negatif disebut bentuk akar kuadrat dengan syarat tidak ada bilangan yang hasil kuadratnya sama dengan a. oleh karena itu √2,√3, √5, √10, √15 dan √19 merupakan bentuk akar kuadrat. Untuk selanjutnya, bentuk akar n√amdapat ditulis am/n dibaca a pangkat m per n. Bentuk am/n disebut bentuk pangkat pecahan. Operasi Aljabar pada Bentuk Akar Penjumlahan dan Pengurangan Penjumlahan dan pengurangan pada bentuk akar dapat dilakukan jika memiliki suku-suku yang sejenis. Kesimpulan jika a, c = Rasional dan b ≥ 0, maka berlaku a√b + c√b = a + c√b a√b - c√b = a - c√b Perkalian dan Pembagian Contoh Perpangkatan Kalian tentu masih ingat bahwa a^" = a^'. Rumus tersebut juga berlaku pada operasi perpangkatan dari akar suatu bilangan. Contoh Operasi Campuran Dengan memanfaatkan sifat-sifat pada bilangan berpangkat, kalian akan lebih mudah menyelesaikan soal-soal operasi campuran pada bentuk akarnya. Sebelum melakukan operasi campuran, pahami urutan operasi hitung berikut. Prioritas yang didahulukan pada operasi bilangan adalah bilangan-bilangan yang ada dalam tanda kurung. Jika tidak ada tanda kurungnya maka pangkat dan akar sama kuat; kali dan bagi sama kuat; tambah dan kurang sama kuat, artinya mana yang lebih awal dikerjakan terlebih dahulu; kali dan bagi lebih kuat daripada tambah dan kurang, artinya kali dan bagi dikerjakan terlebih dahulu. Contoh Merasionalkan Penyebut Dalam perhitungan matematika, sering kita temukan pecahan dengan penyebut bentuk akar, misalnya Agar nilai pecahan tersebut lebih sederhana maka penyebutnya harus dirasionalkan terlebih dahulu. Artinya tidak ada bentuk akar pada penyebut suatu pecahan. Penyebut dari pecahan-pecahan yang akan dirasionalkan berturut-turut adalah Merasionalkan penyebut adalah mengubah pecahan dengan penyebut bilangan irasional menjadi pecahan dengan penyebut bilangan rasional. Penyebut Berbentuk √b Jika a dan b adalah bilangan rasional, serta √b adalah bentuk akar maka pecahan a/√bdapat dirasionalkan penyebutnya dengan cara mengalikan pecahan tersebut dengan √b/√b . Penyebut Berbentuk a+√b atau a+√b Jika pecahan-pecahan mempunyai penyebut berbentuk a+√b atau a+√b maka pecahan tersebut dapat dirasionalkan dengan cara mengalikan pembilang dan penyebutnya dengan sekawannya. Sekawan dari a+√b adalah a+√b adalah dan sebaliknya. Bukti Penyebut Berbentuk √b+√d atau √b+√d Pecahan tersebut dapat dirasionalkan dengan mengalikan pembilang dan penyebutnya dengan bentuk akar sekawannya, yaitu sebagai berikut. Demikian materi Matematika kelas 9 Semester 2 Bab Bilangan Berpangkat dan Bentuk Akar beserta contoh soalnya. Semoga bermanfaat. Rangkuman Materi Bilangan Berpangkat dan Bentuk Akar Kelas 9 SMPBilangan berpangkat bilangan bulatBilangan pangkat nolBilangan pangkat bulat positifBilangan pangkat bulat negatifBilangan rasional berpangkat bulatBentuk AkarMenyederhanakan bentuk akarOperasi aljabar untuk bentuk akarMerasionalkan penyebut suatu pecahanBilangan berpangkat pecahanContoh Soal & Pembahasan Bilangan Berpangkat & Bentuk Akar SMPRangkuman Materi Bilangan Berpangkat dan Bentuk Akar Kelas 9 SMPBilangan berpangkat bilangan bulatBilangan berpangkat merupakan perkalian berulang dari suatu bilangan yang = bilangan pokokn = pangkat/eksponencontoh34 = 3 x 3 x 3 x 3 = 81Bilangan pangkat nolSemua bilangan apabila a ≠ 0 jika dipangkatkan 0 hasilnya sama dengan 1a 0 = 1contoh180 = 1-60 = 1Bilangan pangkat bulat positifPada bilangan pangkat bulat positif berlaku sifat-sifata p x a q = a p+q contoh23 x 25 = 23+5 = 28 Contohap q = apxq = aqxp Contoh-34 2 = -34×2 = -38 ap + aq = ap 1 + aq-p , q ≥ pcontoh53 + 57 = 53 1+57-3 = 53 1+54 ap – aq = ap 1- aq-p , q ≥ pcontoh64 – 69 = 64 1-69-4 = 64 1-65 Bilangan pangkat bulat negatifPada bilangan pangkat bulat negatif berlaku sifat , a ≠ pContohBilangan rasional berpangkat bulatBilangan rasional berpangkat bulat perlakuannya sama seperti pada bilangan berpangkat bilangan AkarBentuk akar merupakan bilangan irasional. Bilangan irasional adalah bilangan real yang tidak bisa dibagi. Contoh bilangan bentuk akar adalahSedangkanMenyederhanakan bentuk akar, a dan b adalah bilangan real positifContoh, a dan b > 0ContohOperasi aljabar untuk bentuk akarSifat-sifat yang berlaku adalah, berlaku juga untuk penguranganContoh, a dan b ≥ 0Contoh, a dan b ≥ 0ContohMerasionalkan penyebut suatu pecahanCara merasionalkannya adalahContohContohContohBilangan berpangkat pecahanBilangan berpangkat pecahan penyelesaiannya sebagai berikut, a ≥ 0 dan p, q bilangan bulat positifContohContoh Soal & Pembahasan Bilangan Berpangkat & Bentuk Akar SMPSoal dari adalah …120133144150PEMBAHASAN Ingat Maka Jawaban CSoal Jika diketahui 1,542 = 2,3716, maka 1542 adalah…. Jika di ubah bentuk 1,54 menjadi 154 x 100, maka 1542 = 1,54 x 1002 = 1,542 x 1002 = 2,3716 x = Jawaban yang tepat adalah B Jawaban BSoal sederhana dari 44 + 44 + 44 + 44 adalah…. …5 x 446 x 444 x 443 x 44PEMBAHASAN Bentuk sederhana dari 44 + 44 + 44 + 44 adalah 4 x 44 Jawaban CSoal dari 4-1 + 3-2 + 7-1-1 adalah….1,781,881,982,18PEMBAHASAN Ingat maka Jawaban CSoal Jika diketahui 2a3 + 3a3 + a3 + 4a3 = nilai a2 + a adalah…10203040PEMBAHASAN 2a3 + 3a3 + a3 + 4a3 = 2+3+1+4 a3 = 10a3 = a3 = = 125 maka nilai a2 + a = 52 + 5 = 25 + 5 = 30 Jawaban CSoal dari adalah…PEMBAHASAN Jawaban DSoal rasional dari adalah…PEMBAHASAN Jawaban ASoal dari …1324PEMBAHASAN Jawaban DSoal dari 2a3b2c2 x 4a-2bc-3…4ab3c-18ab3c-18ab3c-24ab3c-2PEMBAHASAN Jawaban BSoal adalah …1,522,53PEMBAHASAN Jawaban ASoal panjang sisi sebuah persegi 25 cm. maka luas persegi tersebut adalah … cm210062525225PEMBAHASAN Panjang sisi = s = 25 cm Luas persegi dapat dihitung dengan rumus sebagai berikut L = s x s L = 25 cm x 25 cm L = 625 cm2 Jawaban BSoal Persamaan garis 2x + 12 = 225, x > 0, maka nilai x adalah …4567PEMBAHASAN Akar kuadrat dari 225 = 152 Maka nilai x dapat dihitung sebagai berikut 2x + 12 = 225 2x + 12 = 152 2x + 1 = 15 2x = 14 x = 7 Jawaban DSoal sederhana dariP2P3P4P5PEMBAHASAN Jawaban BSoal perhitungan dariPEMBAHASAN Jawaban BSoal Jika √5 = p maka √180 = …6p7p8p9pPEMBAHASAN Jawaban ASoal perhitungan dariPEMBAHASAN Jawaban CSoal perhitungan dari3456PEMBAHASAN Jawaban BSoal perhitungan dari 2√48 + 2√12 – √192 = …8√35√312√34√3PEMBAHASAN Jawaban DSoal rasional dari adalah …PEMBAHASAN Jawaban ASoal sederhana dari √50 + √32 – √98 = …5√24√23√22√2PEMBAHASAN Jawaban DSoal perhitungan dari 39PEMBAHASAN Jawaban DSoal Bentuk rasional dari PEMBAHASAN Jawaban ASoal rasional dari PEMBAHASAN Jawaban CSoal rasional dari PEMBAHASAN Jawaban ASoal Jika . Maka nilai a adalah …8101214PEMBAHASAN Jawaban BSoal maka nilai x2 + 1 adalah …35455565PEMBAHASAN Maka x2 + 1 dapat dihitung sebagai berikut x2 + 1 ⇒ 82 + 1 ⇒ 65 Jawaban DSoal 10203040PEMBAHASAN Jawaban BSoal perhitungan dari = ….PEMBAHASAN Jawaban ASoal perhitungan dari …PEMBAHASAN Jawaban DSoal 45 3 – 44 3 = …43 45 – 44 45 – 44 48 – 47 42 45 – 44 PEMBAHASAN 45 3 – 44 3 = 415 – 412 = 43 45 – 44 Jawaban ASoal pecahan dari adalah …PEMBAHASAN Jawaban CSoal Hasil perhitungan dari 0,010,020,030,04PEMBAHASAN Jawaban CSoal perhitungan dari PEMBAHASAN Jawaban ASoal persegi panjang memiliki panjang cm dan lebar cm. Maka luas persegi panjang tersebut adalah …PEMBAHASAN Jawaban DSoal Diketahui maka nilai a adalah …-5-7-9-11PEMBAHASAN Jawaban CSoal sebuah bangun persegi memiliki panjang diagonal 36 cm. Maka luas persegi adalah …256 cm2 648 cm2560 cm2480 cm2PEMBAHASAN Jawaban BSoal segitiga dengan panjang alas dan tinggi . Maka luas segitiga tersebut adalah …PEMBAHASAN Jawaban DSoal perhitungan dari 46912PEMBAHASAN Jawaban CSoal + 4y3x – 4y2x + 5y-4x – 3yPEMBAHASAN Jawaban ASoal maka nilai x = …46810PEMBAHASAN Maka nilai x x – 2 = 4 x = 6 Jawaban BSoal yang senilai dengan adalah …5-25½PEMBAHASAN Jawaban CSoal dari PEMBAHASAN Jawaban ASoal dari 22 x 24 = …32446472PEMBAHASAN 22 x 24 berlaku sifat sebagai berikut 22 x 24 = 22+4 = 26 = 2 x 2 x 2 x 2 x 2 x 2 = 64 Jawaban CSoal dari 38 35 = …691827PEMBAHASAN 38 35 berlaku sifat sebagai berikut = 38 – 5 = 33 = 27 Jawaban DSoal yang senilai dengan 43 + 45 adalah …43 1 + 4543 1 + 4242 1 + 4848PEMBAHASAN Berlaku sifat sebagai berikut ap + aq = ap 1 + aq-p , q ³ p 43 + 45 = 43 1 + 45 – 3 = 43 1 + 42 Jawaban BSoal sederhana dari adalah …PEMBAHASAN Jawaban ASoal dari 36-5 36-3 = …PEMBAHASAN Jawaban CSoal Berlaku sifat sebagai berikut ap x aq = ap+q Jawaban BSoal rasional dari PEMBAHASAN Jawaban DSoal dari 0,18180,11640,12330,1344PEMBAHASAN Jawaban BSoal dari 3150PEMBAHASAN Jawaban ASoal dari adalah …144198324216PEMBAHASAN Jawaban DSoal dari 2-2 + 4-1 = …1½-10PEMBAHASAN Jawaban BSoal dari 16-2 x 4-3-1 = …4124-7484-8PEMBAHASAN 16-2 x 4-3-1 = 42-2 x 4-3-1 = 4-4 x 4-3-1 = 4-4+-3-1 = 4-7-1 = 48 Jawaban CSoal dari 92 x 34 9 adalah …729288521689PEMBAHASAN 92 x 34 9 = 322 x 34 32 = 34 x 34 32 = 34+4-2 = 36 = 729 Jawaban ASoal sederhana dari PEMBAHASAN Jawaban DSoal sederhana dari adalah….PEMBAHASAN Jawaban BSoal sederhana dari adalah….PEMBAHASAN Jawaban BSoal sederhana dari adalah….PEMBAHASAN Jawaban DSoal + 2p2 + 3p2 + 4p2 = . Maka nilai p3 adalah … 3p2 + 2p2 + 3p2 + 4p2 = 12p2 = p2 = 144 p = 12 Maka p3 = p x p x p = 12 x 12 x 12 = Jawaban A Halo adik-adik, berikut ini kakak admin bagikan contoh Soal Pangkat dan Akar, Soal Matematika Kelas 9 SMP lengkap dengan Kunci Jawaban dan Pembahasan. Soal Pangkat dan Akar ini terdiri dari 20 butir soal pilihan ganda. Adik-adik bisa mendownload soal ini untuk latihan di rumah. Soal Pangkat dan Akar Kelas 9 Semoga contoh Soal Pangkat dan Akar lengkap dengan kunci jawaban dan pembahasan ini, bermanfaat untuk adik-adik khususnya yang sudah kelas 9 Sekolah Menengah Pertama SMP/ SLTP/MTs dan bisa dijadikan referensi belajar. Meskipun sudah tersedia kunci jawaban dan pembahasan, ada baiknya kalian mengerjakan soal-soal ini secara mandiri kemudian cocokkan jawaban kalian dengan kunci jawaban yang sudah tersedia. Ok, selamat mengerjakan .... I. Berilah tanda silang x pada huruf a, b, c, atau d di depan jawaban yang paling benar ! 1. Hasil dari 64$-\frac{1}{3}$ adalah.... a. $\frac{1}{8}$ b. $\frac{1}{4}$ c. 8 d. 4 2. Bentuk sederhana dari $\sqrt{300}$ adalah.... a. 10$\sqrt{3}$ b. 20$\sqrt{3}$ c. 30$\sqrt{3}$ d. 40$\sqrt{3}$ 3. 2-2 + 3-3 + 1-4 = .... a. 1$\frac{6}{54}$ b. 1$\frac{6}{108}$ c. 1$\frac{31}{54}$ d. 1$\frac{31}{108}$ 4. Hasil dari $\frac{1}{3}$3 x 243 ∶ $ \frac{1 }{9^2}$ =.... a. 36 b. 35 c. 34 d. 33 5. Hasil dari 9x-2 y3 z-4 2 adalah.... a. $\frac{81x^{4}y^{6}}{z^{8}}$ b. $\frac{9x^{4}y^{6}}{z^{8}}$ c. $\frac{81y^{6}}{x^{4} z^{8}}$ d. $\frac{9y^{6}}{x^{4} z^{8}}$ 6. Nilai dari 32$\frac{1}{5}$ adalah.... a. 5 b. 4 c. 3 d. 2 7. Susunan bilangan $\sqrt[3]{125}$, $\sqrt[5]{243}$, $\sqrt[4]{16}$ dari kecil ke besar adalah.... a. $\sqrt[3]{125}$ , $\sqrt[5]{243}$ , $\sqrt[4]{16}$ b. $\sqrt[3]{125}$ , $\sqrt[4]{16}$ , $\sqrt[5]{243}$ c. $\sqrt[4]{16}$ , $\sqrt[5]{243}$ , $\sqrt[3]{125}$ d. $\sqrt[4]{16}$ , $\sqrt[3]{125}$ , $\sqrt[5]{243}$ 8. Bentuk baku dari adalah.... a. 2,308 x 108 b. 2,308 x 107 c. 2,38 x 108 d. 2,38 x 107 9. Bentuk sederhana dari $\frac{a^{-5} b^{-1} c^{-4} }{abc^{-6}}$ adalah.... a.. ab2c5 b. a2b5c2 c. ab5c2 d. a2b2c5 10. Hasil dari $\sqrt{175}$ + 4$\sqrt{7}$ - $\sqrt{63}$ adalah.... a. 6$\sqrt{7}$ b. 5$\sqrt{7}$ c. 4$\sqrt{7}$ d. 3$\sqrt{7}$ 11. Bentuk sederhana dari $\frac{2 + \sqrt{8}}{ \sqrt{6}}$ adalah.... a. $\frac{1}{3}$$\sqrt{3}$ + $\frac{2}{3}$$\sqrt{6}$ b. $\frac{1}{3}$$\sqrt{1}$ + $\frac{2}{3}$$\sqrt{3}$ c. $\frac{1}{3}$$\sqrt{6}$ + $\frac{2}{3}$$\sqrt{3}$ d. $\frac{1}{3}$$\sqrt{3}$ + $\frac{2}{3}$$\sqrt{1}$ 12. Jika 39-3x = 27, maka nilai x yang memenuhi adalah.... a. 2 b. 3 c. 4 d. 5 13. Jika 3-x+2 = $\frac{1}{81}$, maka nilai x yang memenuhi adalah.... a. -2 b. -6 c. 2 d. 6 14. Diketahui a = 2$\sqrt{3}$ + $\sqrt{5}$ dan b = 3$\sqrt{5}$ - $\sqrt{3}$. Nilai ab= .... a. 5$\sqrt{15}$ + 9 b. 5$\sqrt{15}$ + 21 c. 5$\sqrt{15}$ - 9 d. 5$\sqrt{15}$ - 21 15. Bentuk sederhana $\frac{\sqrt{3}}{\sqrt{2}- \sqrt{5}}$ adalah.... a. $\frac{1}{3}$ $\sqrt{6}$ +$\sqrt{15}$ b. $\frac{1}{3}$ $\sqrt{6}$ -$\sqrt{15}$ c. -$\frac{1}{3}$ $\sqrt{6}$ +$\sqrt{15}$ d. -$\frac{1}{3}$ $\sqrt{6}$ -$\sqrt{15}$ 16. Diketahui p x 3$\sqrt{2}$ - $\sqrt{6}$ = 12. Nilai p yang memenuhi adalah.... a. 3$\sqrt{6}$ + $\sqrt{2}$ b. 3$\sqrt{6}$ - $\sqrt{2}$ c. 3$\sqrt{2}$ + $\sqrt{6}$ d. 3$\sqrt{2}$ - $\sqrt{6}$ 17. Tentukan luas sebuah persegi jika diketahui panjang sisinya 3$\sqrt{6}$ - 2 cm. a. 58 + 12$\sqrt{6}$ b. 58 - 12$\sqrt{6}$ c. 58 + 6$\sqrt{6}$ d. 58 - 12$\sqrt{6}$ 18. Sebuah belah ketupat memiliki panjang diagonal 3$\sqrt{5}$cm dan2$\sqrt{5}$cm. Luas belah ketupat tersebut adalah.... a. 12 cm2 b. 13 cm2 c. 14 cm2 d. 15 cm2 19. Panjang rusuk suatu kubus 3+4$\sqrt{2}$ cm, volume kubus tersebut adalah....cm3. a. 315 + 236$\sqrt{2}$ b. 236 + 315$\sqrt{2}$ c. 315 - 236$\sqrt{2}$ d. 236 - 315$\sqrt{2}$ 20. Panjang AC adalah... a. 4-$\sqrt{2}$ b. 3+$\sqrt{2}$ c. $\sqrt{15 - 6\sqrt{2}}$ d. $\sqrt{15 + 6\sqrt{2}}$ Berikut ini file Soal Pangkat dan Akar, Soal Matematika SMP Kelas 9 lengkap kunci jawaban dan pembahasan yang bisa adik-adik download. Soal Pangkat dan Akar Kelas 9 SMP plus Kunci Jawaban dan Pembahasan Soal Matematika Kelas 9 Terbaru ⇩ Kunci Jawaban dan Pembahasan Pembahasan Soal Nomor 1Hasil dari 64$-\frac{1}{3}$ adalah....Jawaban b. $\frac{1}{4}$ Pembahasan Soal Nomor 2Bentuk sederhana dari $\sqrt{300}$ adalah.... $\sqrt{300}$ = $\sqrt{100}$.3 = 10$\sqrt{3}$ Jawaban a. 10$\sqrt{3}$ Pembahasan Soal Nomor 32-2 + 3-3 + 1-4 = .... Jawaban d. 1$\frac{31}{108}$ Pembahasan Soal Nomor 4Hasil dari $\frac{1}{3}$3 x 243 ∶ $ \frac{1 }{9^2}$ =.... Jawaban a. 36 Pembahasan Soal Nomor 5 Hasil dari 9x-2 y3 z-4 2 adalah.... Jawaban c. $\frac{81y^{6}}{x^{4} z^{8}}$ Pembahasan Soal Nomor 6Nilai dari 32$\frac{1}{5}$ adalah.... Jawaban d. 2 Pembahasan Soal Nomor 7Susunan bilangan $\sqrt[3]{125}$, $\sqrt[5]{243}$, $\sqrt[4]{16}$ dari kecil ke besar adalah....$\sqrt[3]{125}$ = 5$\sqrt[5]{243}$ = 3$\sqrt[4]{16}$ = 2 Jadi susunan bilangan dari terkecil adalah $\sqrt[4]{16}$ = 2, $\sqrt[5]{243}$, $\sqrt[3]{125}$ Jawaban c. $\sqrt[4]{16}$ , $\sqrt[5]{243}$ , $\sqrt[3]{125}$ Pembahasan Soal Nomor 8Bentuk baku dari adalah.... = 2,308 x 107 Jawaban b. 2,308 x 107 Pembahasan Soal Nomor 9 Jawaban c Pembahasan Soal Nomor 10 √175+4√7-√63 = √ + 4√7 -√ = 5√7 + 4√7 - 3√7 = 6√7 Jawaban a Pembahasan Soal Nomor 11 Jawaban c Pembahasan Soal Nomor 12 39-3x = 2739-3x = 33 9 - 3x = 3 -3x = -6 x = -6/-3 x = 2 Jawaban a Pembahasan Soal Nomor 13 3-x+2 = 1/81 3-x+2 = 1/34 3-x+2 = 3-4 -x + 2 = -4 -x = -6 x = 6 Jawaban d Pembahasan Soal Nomor 14 Ab = .... 2√3+ √53√5- √3 = 6√ + = 6√15-6 + 15-√15 = 5√15 + 9 Jawaban a Pembahasan Soal Nomor 15 Jawaban c Pembahasan Soal Nomor 16 Jawaban c Pembahasan Soal Nomor 17 Luas persegi = s x s = 3√6-2 x 3√6-2 = 54 - 6√6- 6√6 + 4 = 58 - 12√6 Jawaban b Pembahasan Soal Nomor 18 Luas belah ketupat = 1/2 x d1 x d2 = 1/2 x 3√5 x 2√5 = 1/2 x = 1/2 x 30 = 15 cm2 Jawaban d Pembahasan Soal Nomor 19 Volume kubus = s x s x s = 3+4√2 x 3+4√2 x 3+4√2 = {3+4√2 x 3+4√2} x 3+4√2 = {9 + 12√2 + 12√2 + 32} x 3+4√2 = {41 + 24√2} x 3+4√2 = 123 + 164√2 + 72√2 + 192 = 315 + 236√2 Jawaban a Pembahasan Soal Nomor 20 Jawaban cPembahasan Soal Pangkat dan Akar Kelas 9 SMP ⇩ Itulah Contoh Soal Pangkat dan Akar Kelas 9 SMP plus Kunci Jawaban yang bisa saya bagikan. Semoga bermanfaat.